Revista Brasileira de Meio Ambiente

Periódico de Acesso Aberto

CiteScore

0.4

Indexada na
SCOPUS

QUALIS

B3

2017-2021
quadriênio

Idioma

Revista Brasileira de Meio Ambiente

e-ISSN: 2595-4431


Resumo

Um dos parâmetros mais importantes da qualidade da praia é a qualidade da água. Sua relevância depende de estratégias de amostragem e métodos analíticos sendo bem implantados e os dados resultantes sendo transformados em informações de qualidade para os tomadores de decisão e todas as partes interessadas. A presente revisão examina os métodos laboratoriais, os indicadores utilizados e mais alguns parâmetros relacionados a avaliação de qualidade de águas balneares. O objetivo principal é desenvolver uma visão crítica do processo que possa ajudar a entender seu potencial, melhor planejamento de novos programas e a autocrítica dos existentes, a fim de que os gestores planejem formas de melhorar sua contribuição para a segurança pública e ambiental na zona costeira. O parâmetro mais estudado para avaliar a qualidade das águas é a quantificação de bactérias e os trabalhos apresentam a maioria dos dados primários. Internacionalmente, duas metodologias de bancada predominam (membrana filtrante e substratos). As análises de dados levam em consideração as coletas e muitas delas foram voltadas para o desenvolvimento de técnicas de predição de padrões. Os requisitos necessários para garantir em segurança a utilização das águas balneares passam não só pelos acessos, infraestruturas e segurança, mas principalmente pela qualidade da água.

Referências

  • Alm, E.W.; Daniels-Witt, Q.R.; Learman, D.R.; Ryu, H.; Jordan, D.W.; Gehring, T.M. & Santo Domingo, J. (2018). Potential for gulls to transport bacteria from human waste sites to beaches. Science of The Total Environment, 615, 123–130.
  • Aragonés, L.; López, I.; Palazón, A.; López-Úbeda, R. & García, C. (2016). Evaluation of the quality of coastal bathing waters in Spain through fecal bacteria Escherichia coli and Enterococcus. Science of The Total Environment, 566–567, 288–297.
  • Aranda, D.; Lopez, J.V.; Solo-Gabriele, H.M. & Fleisher, J.M. (2016). Using probabilities of enterococci exceedance and logistic regression to evaluate long term weekly beach monitoring data. Journal of Water and Health, 14(1), 81–89.
  • Araújo, M. C. B. & Costa, M. F. (2008). Environmental quality indicators for recreational beaches classification. Journal of Coastal Research, 24(6), 1439–1449.
  • Bae, H.-K. (2018). The Modelling Approach for Predicting Coastal Pollutions using Rainfall Distributions over Different Land Use/Land Cover. Journal of Coastal Research, 85, 11–15.
  • Bedri, Z.; O’Sullivan, J.J.; Deering, L.A.; Demeter, K.; Masterson, B.; Meijer, W.G. & O’Hare, G. (2015). Assessing the water quality response to an alternative sewage disposal strategy at bathing sites on the east coast of Ireland. Marine Pollution Bulletin, 91(1), 330–346.
  • Betancourt, W.Q.; Duarte, D.C.; Vásquez, R.C. & Gurian, P.L. (2014). Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: Estimation of bathing-associated disease risks. Marine Pollution Bulletin, 85(1), 268–273.
  • Buer, A.-L.; Gyraite, G.; Wegener, P.; Lange, X.; Katarzyte, M.; Hauk, G. & Schernewski, G. (2018). Long term development of Bathing Water Quality at the German Baltic coast: spatial patterns, problems and model simulations. Marine Pollution Bulletin, 135, 1055–1066.
  • Byappanahalli, M.N.; Nevers, M.B.; Whitman, R.L.; Ge, Z.; Shively, D.; Spoljaric, A. & Przybyla-Kelly, K. (2015). Wildlife, urban inputs, and landscape configuration are responsible for degraded swimming water quality at an embayed beach. Journal of Great Lakes Research, 41(1), 156–163.
  • Ceballos, B. S. O. & Diniz, C. R. (2017). Técnicas de Microbiologia Sanitária e Ambiental. Campina Grande: EDUEPB.
  • Cheung, P.K.; Yuen, K.L.; Li, P.F.; Lau, W.H.; Chiu, C.M.; Yuen, S.W. & Baker, D.M. (2015). To swim or not to swim? A disagreement between microbial indicators on beach water quality assessment in Hong Kong. Marine Pollution Bulletin, 101(1), 53–60.
  • Cloutier, D. D.; Alm, E. W. & Mclellan, S. L. (2015). Influence of Land Use, Nutrients, and Geography on Microbial Communities and Fecal Indicator Abundance at Lake Michigan Beaches. Applied and Environmental Microbiology, 81(15), 4904–4913.
  • Cloutier, D. D. & Mclellan, S. L. (2017). Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Applied and Environmental Microbiology, 83, (4).
  • CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. RESOLUÇÃO CONAMA no 274, de 29 de novembro de 2000. In: Diário Oficial da União no 18, de 25/01/2001. [s.l: s.n.]. p. 59–62.
  • Deng, D.; Zhang, N.; Mustapha, A.; Xu, D.; Wuliji, T.; Farley, M.; Yang, J.; Hua, B.; Liu, F. & Zheng, G. (2014). Differentiating enteric Escherichia coli from environmental bacteria through the putative glucosyltransferase gene (ycjM). Water Research, 61, 224–231.
  • Efstratiou, M. A. (2001). Managing Coastal Bathing Water Quality: The Contribution of Microbiology and Epidemiology. Marine Pollution Bulletin, 42(6), 424–431.
  • Ekklesia, E.; Shanahan, P. & Chua, L.H.C. & Eikaas, H.S. (2015). Temporal variation of faecal indicator bacteria in tropical urban storm drains. Water Research, 68, 171–181.
  • Farnham, D. J. & Lall, U. (2015). Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways. Water Research, 76, 143–159.
  • Fiorentino, L. A.; Olascoaga, M. J. & Reniers, A. (2014). Analysis of water quality and circulation of four recreational Miami beaches through the use of Lagrangian Coherent Structures. Marine Pollution Bulletin, 83(1), 181–189.
  • Garfield, E. (1970). Citation Indexing for Studying Science. Nature, 227, 669–71.
  • Garfield, E. (1972). Citation Analysis as a Tool in Journal Evaluation. Science, 178, 471–479.
  • Goodwin, K.D.; Schriewer, A.; Jirik, A.; Curtis, K. & Crumpacker, A. (2017). Consideration of Natural Sources in a Bacteria TMDL—Lines of Evidence, Including Beach Microbial Source Tracking. Environmental Science & Technology, 51(14), 7775–7784.
  • Griffith, J.F.; Schiff, K.C.; Lyon, G.S. & Fuhrman, J.A. (2010). Microbiological water quality at non-human influenced reference beaches in southern California during wet weather. Marine Pollution Bulletin, 60(4), 500–508.
  • Heaney, C.D.; Exum, N.G.; Dufour, A.P.; Brenner, K.P.; Haugland, R.A.; Chern, E.; Schwab, K.J.; Love, D.C.; Serre, M.L.; Noble, R. & Wade, T.J. (2014). Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches. Science of The Total Environment, 497–498, 440–447.
  • Hughes, B.; Beale, D.J.; Dennis, P.G.; Cook, S. & Ahmed, W. (2017). Cross-Comparison of Human Wastewater-Associated Molecular Markers in Relation to Fecal Indicator Bacteria and Enteric Viruses in Recreational Beach Waters. Applied and Environmental Microbiology, 83(8).
  • Ivar do Sul, J. A. & Costa, M. F. (2013). Plastic pollution risks in an estuarine conservation unit. Journal of Coastal Research, 65, (Special Issue) 65, 48–53.
  • Jang, C.-S. & Liang, C.-P. (2018). Characterizing health risks associated with recreational swimming at Taiwanese beaches by using quantitative microbial risk assessment. Water Science and Technology, 77(2), 534–547.
  • Karydis, M.; Kitsiou, D. (2013). Marine water quality monitoring: A review. Marine Pollution Bulletin, 77(1–2), 23–36.
  • Kirs, M.; Kisand, V.; Wong, M.; Caffaro-Filho, R.A.; Moravcik, P.; Harwood, V.J.; Yoneyama, B. & Fujioka, R.S. (2017). Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed. Water Research, 116, 23–33.
  • Kitsiou, D. & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778–801.
  • Klein, L. & Dodds, R. (2017). Perceived effectiveness of Blue Flag certification as an environmental management tool along Ontario’s Great Lakes beaches. Ocean & Coastal Management, 141, 107–117.
  • Lam, J.T.; Lui, E.; Chau, S.; Kueh, C.S.W.; Yung, Y.-K. & Yam, W.C. (2014). Evaluation of real-time PCR for quantitative detection of Escherichia coli in beach water. Journal of Water and Health, 12(1), 51–56.
  • Li, X.; Harwood, V.J.; Nayak, B. & Weidhaas, J.L. (2016). Ultrafiltration and Microarray for Detection of Microbial Source Tracking Marker and Pathogen Genes in Riverine and Marine Systems. Applied and Environmental Microbiology, 82(5), 1625–1635.
  • Lušić, D.V.; Jozić, S.; Cenov, A.; Glad, M.; Bulić, M. & Lušić, D. (2016). Escherichia coli in marine water: Comparison of methods for the assessment of recreational bathing water samples. Marine Pollution Bulletin, 113(1–2), 438–443.
  • Lušić, D.V.; Kranjčević, L.; Maćešić, S.; Lušić, D.; Jozić, S.; Linšak, Ž.; Bilajac, L.; Grbčić, L. & Bilajac, N. (2017). Temporal variations analyses and predictive modeling of microbiological seawater quality. Water Research, 119, 160–170.
  • Mello, C. M. & Martins, V. (2016). Metodologia Científica (1a ed). Rio de Janeiro: Freitas Bastos Editora.
  • Monteiro, R. C. P.; Ivar do Sul, J. A. & Costa, M. F. (2018). Plastic pollution in islands of the Atlantic Ocean. Environmental Pollution, 238, 103–110.
  • Nevers, M.B.; Przybyla-Kelly, K.; Spoljaric, A.; Shively, D.; Whitman, R.L. & Byappanahalli, M.N. (2016). Freshwater wrack along Great Lakes coasts harbors Escherichia coli: Potential for bacterial transfer between watershed environments. Journal of Great Lakes Research, 42(4), 760–767.
  • Oun, A.; Yin, Z.; Munir, M. & Xagoraraki, I. (2017). Microbial pollution characterization of water and sediment at two beaches in Saginaw Bay, Michigan. Journal of Great Lakes Research, 43(3), 64–72.
  • Pereira, S.P.; Rosman, P.C.C.; Alvarez, C.; Schetini, C.A.F.; Souza, R.O. & Vieira, R.H.S.F. (2015). Modeling of coastal water contamination in Fortaleza (Northeastern Brazil). Water Science and Technology, 72(6), 928–936.
  • Pond, K. (2005). Water Recreation and Disease. Plausibility of Associated Infections: Acute Effects, Sequelae and Mortality (Who Emerging Issues in Water & Infectious Disease). Intl Water Assn.
  • Praveena, S.M.; Pauzi, N.M.; Hamdan, M. & Sham, S.M. (2015). Assessment of swimming associated health effects in marine bathing beach: An example from Morib beach (Malaysia). Marine Pollution Bulletin, 92(1–2), 222–226.
  • Praveena, S.M.; Shamira, S.S.; Ismail, S.N.S. & Aris, A.Z. (2016). Fecal indicator bacteria in tropical beach sand: Baseline findings from Port Dickson coastline, Strait of Malacca (Malaysia). Marine Pollution Bulletin, 110(1), 609–612.
  • Przybyla-Kelly, K.; Nevers, M.B.; Breitenbach, C. & Whitman, R.L. (2013). Recreational water quality response to a filtering barrier at a Great Lakes beach. Journal of Environmental Management, 129, 635–641.
  • Quilliam, R. S.; Jamieson, J. & Oliver, D. M. (2014). Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Marine Pollution Bulletin, 84(1–2), 201–207.
  • Rothenheber, D. & Jones, S. (2018). Enterococcal Concentrations in a Coastal Ecosystem Are a Function of Fecal Source Input, Environmental Conditions, and Environmental Sources. Applied and Environmental Microbiology, 84(17).
  • Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E. & Elmir, S. (2004). Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Research, 38(13), 3119–3131.
  • Silva, J. A. (2001). Cientometria: A Métrica da Ciência. Paideia, 11(20), 5–10.
  • Sousa, S.H.M.; Ferreira, P.A.L.; Martins, M.V.A.; Siegle, E.; Amaral, P.G.C.; Figueira, R.C.L.; Yamashita, C.; Rodrigues, A.R. & Mahiques, M.M. (2016). Spatial sediment variability in a tropical tide dominated estuary: Sources and drivers. Journal of South American Earth Sciences, 72, 115–125.
  • Souza, R.V.; Campos, C.J.A.; Garbossa, L.H.P. & Seiffert, W.Q. (2018). Developing, cross-validating and applying regression models to predict the concentrations of faecal indicator organisms in coastal waters under different environmental scenarios. Science of The Total Environment, 630, 20–31.
  • Staley, Z.R.; Boyd, R.J.; Shum, P. & Edge, T.A. (2018). Microbial Source Tracking Using Quantitative and Digital PCR To Identify Sources of Fecal Contamination in Stormwater, River Water, and Beach Water in a Great Lakes Area of Concern. Applied and Environmental Microbiology, 84(20).
  • Suciu, M.C.; Tavares, D.C.; Costa, L.L.; Silva, M.C.L. & Zalmon, I.R. (2017). Evaluation of environmental quality of sandy beaches in southeastern Brazil. Marine Pollution Bulletin, 119(2), 133–142.
  • Thoe, W.; Gold, M.; Griesbach, A.; Grimmer, M.; Taggart, M.L. & Boehm, A.B. (2014). Predicting water quality at Santa Monica Beach: Evaluation of five different models for public notification of unsafe swimming conditions. Water Research, 67, 105–117.
  • Thoe, W.; Lee, O.H.K.; Leung, K.F.; Lee, T.; Ashbolt, N.J.; Yang, R.R. & Chui, S.H.K. (2018). Twenty five years of beach monitoring in Hong Kong: A re-examination of the beach water quality classification scheme from a comparative and global perspective. Marine Pollution Bulletin, 131, 793–803.
  • Tortora, G. J.; Funke, B. R. & Case, C. L. (2016). Microbiologia (12a ed.). Artmed, 2016.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2002). Method 1600: Enterococci in Water by Membrane Filtration Using membrane - Enterococcus Indoxyl-$-D-Glucoside Agar (mEI). Washington, DC: U.S. Environmental Protection Agency.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2012). Recreational Water Quality Criteria. Washington, DC: U.S. Environmental Protection Agency.
  • USEPA - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. (2014). Water Quality Standards Handbook. Washington, DC: U.S. Environmental Protection Agency.
  • Wanjugi, P.; Sivaganesan, M.; Korajkic, A.; McMinn, B.; Kelty, C.A.; Rhodes, E.; Cyterski, M.; Zepp, R.; Oshima, K.; Stachler, E.; Kinzelman, J.; Kurdas, S.R.; Citriglia, M.; Hsu, F.-C.; Acrey, B. & Shanks, O.C. (2018). Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Research, 140, 200–210.
  • Weiskerger, C.J.; Brandão, J.; Ahmed, W.; Aslan, A.; Avolio, L.; Badgley, B.D.; Boehm, A.B.; Edge, T.A.; Fleisher, J.M.; Heaney, C.D.; Jordao, L.; Kinzelman, J.L.; Klaus, J.S.; Kleinheinz, G.T.; Meriläinen, P.; Nshimyimana, J.P.; Phanikumar, M.S.; Piggot, A.M.; Pitkänen, T.; Robinson, C.; Sadowsky, M.J.; Staley, C.; Staley, Z.R.; Symonds, E.M.; Vogel, L.J.; Yamahara, K.M.; Whitman, R.L.; Solo-Gabriele, H.M. & Harwood, V.J. (2019). Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 162, 456–470.
  • Weiskerger, C. J. & Whitman, R. L. (2018). Monitoring E. coli in a changing beachscape. Science of The Total Environment, 619–620, 1236–1246.
  • WHO - WORLD HEALTH ORGANIZATION. (2003). Guidelines for Safe Recreational Water Environments: Coastal and Fresh Waters. Geneva: WHO Library Cataloguing in Publication Data.
  • WHO - WORLD HEALTH ORGANIZATION. (2011). Guidelines for Drinking-water Quality. Geneva: WHO Library Cataloguing in Publication Data.
  • WHO - WORLD HEALTH ORGANIZATION. (2014). Progress on sanitation and drinking water - 2014 update. WHO Library Cataloguing in Publication Data.
  • Zhang, J.; Qiu, H.; Li, X.; Niu, J.; Nevers, M.B.; Hu, X. & Phanikumar, M.S. (2018). Real-Time Nowcasting of Microbiological Water Quality at Recreational Beaches: A Wavelet and Artificial Neural Network-Based Hybrid Modeling Approach. Environmental Science & Technology, 52(15), 8446–8455.
  • Zhang, W.; Wang, J.; Fan, J.; Gao, D. & Ju, H. (2013). Effects of rainfall on microbial water quality on Qingdao No. 1 Bathing Beach, China. Marine Pollution Bulletin, 66(1–2), 185–190.
  • Zuza-Alves, D.L.; Medeiros, S.S.T.Q.; Souza, L.B.F.C.; Silva-Rocha, W.P.; Francisco, E.C.; Araújo, M.C.B.; Lima-Neto, R.G.; Neves, R.P.; Melo, A.S.A. & Chaves, G.M. (2016). Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Frontiers in Microbiology, 7.

Informações do artigo

Histórico

  • Recebido: 19/02/2020
  • Publicado: 11/07/2020